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A Wave Mechanical Description of Electron and Positron Emission from Crystals 

BY R.E. DEWAMES AND W. F. HALL 
North American Aviation Science Center, Thousand Oaks, California, U.S.A. 

(Received 7 June 1967 and in revised form 12 September 1967) 

A wave mechanical treatment of the spatial dependence of the intensity for positrons and electrons 
emitted from a radioactive source embedded in a crystal is developed. The predicted intensity pattern 
is found to be characterized by Bragg angles and Bragg widths and as such cannot be derived from a 
classical treatment. 

1. Introduction 

Recently Uggerhoj (1966) measured the orientation 
dependence of the intensity o f t  + and r -  particles emit- 
ted from 64Cu embedded in a copper lattice [Fig. l(a)]. 
Because of the remarkable similarity between the emit- 
ted intensity observed for the positron and that ob- 
served for heavier charged particles under the same 
conditions of emission [see Fig. l(b); Domeij (1966)] 
Uggerhoj compared his measured angular widths with 
the predictions of the classical mechanical theory devel- 
oped by Lindhard (1965) for the motion of charged 
particles in a crystal lattice. As he obtained substantial 
agreement with Lindhard's critical angle ~'1, he con- 
cluded that his measured intensities were just another 
manifestation of classical channeling and blocking 
phenomena. 

It is well known that the phenomena observed in the 
electron microscope must be described in terms of 
wave interference; Bragg angles and resonance widths 
dominate the intensity patterns even when the electron 
wavelength is very much smaller than the lattice spac- 
ing of the target crystal. Yet, wave interference has 
been dismissed in the description of channeling experi- 
ments such as those of Uggerhoj on the basis that the 
DeBroglie wavelength is small. 

No one can doubt that there is, indeed, a limit in 
which classical mechanics can be used to describe the 
motion of particles in crystals. But, in view of the dis- 
crepancy mentioned above, it becomes necessary to 
ask under what conditions the correspondence limit 
is obtained. The classical picture of the emission of a 
particle from a lattice site in a crystal envisions the 
particle leaving its parent atom with a definite, but 
random, momentum; those particles which leave at 
large angles to the crystal planes encounter an essen- 
tially amorphous environment and contribute a uni- 
form background of intensity outside the crystal; those 
particles which leave at a small angle to a crystal plane 
are heavily influenced by the average potential in that 
plane, so that positively charged particles are driven 
away from their initial directions, giving a minimum 
of intensity parallel to the plane, while negatively 
charged particles may become trapped by the planar 
potential, tending to emerge from the crystal parallel 
to the trapping plane. 

The quantum mechanical solution of the emission 
problem yields a spherical wave for the initial ampli- 
tude of the emitted particle, with equal amplitude in 
all directions. Because of the phase coherence of this 
emitted wave, the scattering of the wave from the 
periodic array of crystal atoms introduces marked in- 
terference effects in the emitted intensity. This is in 
contrast to the classical view of the initial conditions, 
a view which corresponds quantum mechanically to 
starting a particle as a wave packet localized to within 
a small fraction of a lattice spacing of the emitter, with 
some large momentum, defined to within the limits 
set by the uncertainty principle. This version of the 
initial conditions obviously restricts interference effects 
to a minimum, since they can only arise owing to the 
spread of the wave packet as it moves through the 
crystal. 

The problem of the intensity pattern outside a crys- 
tal due to a source inside the crystal was solved by von 
Laue in the 1930's, in order to explain the bands ob- 
served by Kikuchi when electrons scattered inelastically 
inside the crystal. Both the theoretical development 
and many examples of the observed patterns can be 
found in his book, Materiewellen und Ihre Interferenzen, 
published in I948. 

Basically, one must consider the propagation of the 
original spherical wave as a superposition of Bloch 
waves inside the crystal, taking appropriate boundary 
conditions at the crystal surface to determine the inten- 
sity pattern outside. To describe accurately the result- 
ing intensity, several Bloch waves are needed, which 
greatly complicates the analytical task. However, the 
most important features of the emission can be recov- 
ered from a consideration of only one or two Bragg 
reflections. The analysis in terms of these simpler prob- 
lems is discussed in § 3. In later sections, contact is 
made with the experimental observations of Uggerhoj 
and consequences leading to possible further experi- 
ments are discussed. 

2. Theoretical development 

The emission of a particle from a point r' inside a 
crystal can be described by the following approxima- 
tion to the many-particle SchrSdinger equation (Laue, 
1948): 
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h2V2 ] 
~2m-- + U ( r ) - E  ~o(r)=g(r-r') , (1) 

where ~0(r) is the probability amplitude for the particle 
propagating without loss of energy, U(r) is an effective 
periodic potential which is primarily determined by the 
potential of interaction between a single lattice atom 
and the emitted particle, E is the energy of the emitted 
particle, and m is its mass. Inelastic (energy loss) scat- 

tering of the emitted particle introduces an imaginary 
part of U(r) whose form is determined by the cross- 
section for inelastic scattering in the crystal. 

To calculate the intensity pattern of the emission 
outside the crystal, it is convenient to use the reci- 
procity relation introduced by von Laue, which gives 
the intensity at a point r.4 outside the crystal due to a 
point source inside in terms of the intensity at that 
source point rB due to a spherical wave emitted from 
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Fig. 1. (a) Emission yield of positrons and electrons from copper v e r s u s  angle between emission direction and the [100] axis. The 

energy of positrons and electrons is 200-300 keV and 150-300 keV, respectively (Uggerhoj, 1966). (b) The intensity distribution 
of the three ~-particle groups as a function of polar angles illustrating directional effects (Domeij, 1966). 
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the point of observation: 

~(rA)=~p(rB) , 

where ~(rB) (the reciprocal wave) is the solution to 
equation (1) with the source point r' outside the crystal, 
at rA. 

When the observation is made sufficiently far from 
the crystal, the spherical wave emitted at rA reaches 
the crystal essentially as a plane wave. This allows one 
to obtain the amplitude inside the crystal by matching 
the Bloch wave eigenfunction for a particle inside the 
crystal to the incoming plane wave at the entrance sur- 
face. The solution to this problem is discussed, for ex- 
ample, in an earlier paper by DeWames, Hall & Leh- 
man (1966) (henceforth referred to as I). Essentially, 
the problem is reduced to solving equation (1) for an 
infinite crystal, without the source term. Expanding the 
periodic potential U(r) and the amplitude ~(r) in Bloch 
wave form, one has 

(2~o + (n)Uh + S ~'h-guo = O, (2) 
g 

where we have written 

q~(r) = exp ( ikM. r) X uh(kM) exp/khr) 
h 

U(r) 
- X ~h exp (ikn. r) 

E h 
h2 h 2 
2m k ~ - E = 2 r o E  ,-~--~-[k 2 + 2kn . kM]=(hE.  (3) 

The sums in equations (2) and (3) run over all recip- 
rocal lattice vectors kn. However, as was shown in I, 
for electrons and positrons at energies larger than a 
kilovolt, one need only consider a few terms in these 
s u m s .  

If one restricts the sums in equations (2) and (3) to 
N terms, there will be N independent solutions for rio, 
and hence for the Bloch wave coefficients Uh, all be- 
longing to the same energy E. These solutions must be 
superposed to obtain a wave function which matches 
properly onto the plane wave which is incident on the 
surface of the crystal from the direction of the point 
of observation. Neglecting the reflected wave, one can 
write the boundary conditions as 

= X A; exp ( ik~.  r) X U<h j) exp (ikh. r) 
j h 

=exp (ik0. r) (4) 

for all r such that ft. r = 0 
where h2k2o/2m=E, fi is the direction of the inward 
normal to the crystal surface, and the superscript j is 
used to label the roots of equation (2). 

One satisfies these boundary conditions by choosing 
(Zachariasen, 1946) 

k ~ =  ko + k~)6(o j) Fz /ko . ~,  ( 5 )  

and calculating the coefficients Aj from equation (4). 
Note that in order that equation (5) be consistent with 
the previous definition of r0 in equation (3), r0~ 1. 

Finally, one employs the reciprocity relation to 
determine the intensity observed outside the crystal by 
evaluating ~ at the point where the particle was emitted. 

3. Qualitative features of the intensity 

The intensity pattern which one observes outside a 
crystal for a source placed inside exhibits considerable 
structure, as will become apparent from the results to 
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Fig. 2. Angular  intensity v~triation about  the Bragg angle, no  
attenuation. 
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Fig. 3. Angular  intensity variation for (a) the electron and (b) 

the posi tron.  Two-wave solution, no at tenuat ion.  
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be presented later on. However, almost all the features 
which appear can be understood in terms of the be- 
havior of the intensity which one obtains for the case 
of a single Bragg reflection. 

Specializing to the case of an emitter located at a 
lattice site,* one finds that the two-wave (one Bragg 
reflection) solution takes the form 

+ ( l - x )  2exp - 1+ V l ~ y  2 t/~o" 

+2x(1 -x )exp{ - t /~o"  } cos {1/1 +y2 t/~'n} (6) 

where 
y--1  } 

1+ 1/1  

* If the emitter is located in an interstitial site such as 
midway between two atomic sites, then intensity maximum 
becomes minimum and vice versa, provided that the ~n"~t. 
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Fig. 4. Angular intensity variation for (a) the electron and (b) 

the positron. Three-wave solution, no attenuation. 

y = (h/2~'h 
= 

• • 1 ~ = (ko~uh)- , 

(Re ~uh = g/h) 
t /  

(Im ~,n --~uh ) 
/ •  

~h = - (k0  Im ~,h) -1 
(7) 

and t is the distance of the emitting atom from the 
crystal surface. Here we have assumed the imaginary 
part of the lattice potential U to be small compared 
with its real part, which is justified for electrons and 
positrons in the keV range and above (I). In what fol- 
lows, we have taken the basic interaction potential 
between the lattice atom and the emitted particle to 

• l /  be a screened Coulomb,* calculating ~uh and ~'h as 
discussed in I. For all the calculations in the present 
paper, we have used the copper lattice at 0 °K as our 
model crystal. 

The extinction distance ~, is typically less than 100 A 
for electron energies above 100 kV, while the absorp- 
tion length ~0' is about 10 times ~ .  Thus, a collection 
of emitting atoms spread over several extinction dis- 
tances from the crystal surfaces, such as might be 
achieved by bombarding the crystal with radioactive 
atoms at a definite energy, will give an intensity which 
is the average of equation (6) over the thickness. This 
average will eliminate the cosine term, leaving only the 
exponentials, with the average distance to the emitter 
replacing t. 

In Fig.2 we have sketched the thickness averaged 
intensity one obtains for the two-wave case as a func- 
tion of angle measured from the Bragg condition when 
the absorption length is taken to be infinite (no attenua- 
tion). The scale y is approximately given by 

sin 20B 
y--  - - ( 0 8 - 0 )  (8) 

Vh 

so that its value at O=0 (looking straight down the 
planes) depends on the magnitudes of V~, and the Bragg 
angle. 

Fig. 3 shows the intensity pattern one might expect 
from including the Bragg reflection on the other side 
of 0=0.  It is constructed by reflecting the curve of 
Fig.2 about O=0, which for the positron occurs at 
y = + 1.5, and for the electron at y = - 1.5, for the con- 
ditions shown in the Figure. 

In Fig. 4 we have sketched the true three-wave solu- 
tion for the intensity, for the same conditions as in 
Fig. 2. The dip for the positron and the enhancement 
for the electron are correctly predicted from the two- 
wave solution. However, the wings on these two curves 
are significantly reduced in size. Also, the electron fails 
to show any cusp at 0 = 0, whereas the positron shows 
a marked rise at the origin. 

When attenuation is added to the problem, the en- 
hancement above background disappears and the in- 
tensity minimum shifts toward the Bragg angle. The 
two-wave prediction for the intensity about 0 = 0 com- 
pares quite well with the three-wave solution, which is 
displayed in Fig.5. The only significant change in 

* U ( r ) = ( 1  +iK)Ze 2 exp ( -Ar) /r .  

A C 24A - 14" 
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going to the three-wave case is a lowering of the value 
at 0 = 0  relative to background. 

It is interesting to note the similarity in shape and 
relative magnitude between the positron intensity pat- 
tern observed by Uggerhoj (Fig. 1) and the curve of 
Fig. 4(b). There is, however, one significant difference: 
the wings in Fig.4(b) occur at about 208, whereas for 
the energies used by Uggerhoj, the wings occur at 
about 808. In the next section we shall see how this 
discrepancy might be explained. 

experiments which can distinguish between the classical 
interpretation of electron motion in terms of channel- 
ing and blocking, and the wave mechanical interpreta- 
tion in terms of Kikuchi bands. The most obvious ex- 
periment of this type is to measure the separation of 
the 'wings' of the intensity pattern in a region where 
only one plane contributes to the intensity, e.g. far out 
from the symmetry direction. This separation should 
reduce to 208. With regard to attenuation, it must be 
pointed out that the intensity we have calculated, e.g. 

4. Relation to experiment 

The intensity emitted in an arbitrary direction from the 
crystal in general is influenced by many simultaneous 
Bragg reflections due to different sets of intersecting 
planes. For instance, Uggerhoj observed the intensity 
in the neighborhood of the copper [001] direction, 
where four different sets of planes intersect. The ge- 
ometry for his experiment is represented schematically 
in Fig. 6, with lines drawn at 208 to indicate the posi- 
tion of the 'wings' about each plane. 

The smallest number of waves one can hope to use 
in describing such a situation is nine, which makes the 
interpretation of the measured intensity somewhat 
difficult. However, one can say that structure is ex- 
pected to show up in the intensity pattern at angles 
which intersect any of the 'wings'. 

A computer calculation for the geometry of Fig. 6 
for no attenuation gives the results shown in Figs.7 
and 8. Neglecting attenuation is appropriate for the 
experiment of Uggerhoj because the/7 mean free path 
at his energies is long compared with the mean depth of 
the emitters. Fig. 7 shows the intensity which would be 
observed moving exactly parallel to the (020) plane. 
The most important feature to notice here is that the 
intensity does not return to background for large 0. 
This is because one remains at 0 = 0  relative to the 
plane one is travelling along, and in the absence of the 
other planes there would be essentially no variation 
along the band. 

In Fig. 8 the path of observation makes an angle of 
11¼ ° with the (020) plane, as illustrated by the line 
labelled 2 in Fig.6. Here one notices that the final 
'wing' is crossed at an angle of about 4 ° (808). Also, 
at large 0 one slowly returns to background ([~0] z= 1). 
The structure one encounters prior to the final 'wing' 
is negligible for the positron, constituting an essentially 
broad minimum in the intensity. For the electron, the 
structure for 0 < 808 is much more pronounced, with 
a relatively sharp peak at 0 = 0, followed by a shoulder 
and a second maximum where the 'wing' for the (200) 
and (220) planes are intersected. 

At this stage, one can only suggest that tliese were 
the conditions under which Uggerhoj made his meas- 
urements. Certainly, the similarity in structure, both 
for the positron and the electron, is striking. 

Clearly, it is worthwhile to try to simplify the ex- 
perimental situation and to consider other types of 
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in Fig. 5, applies only to the beam which has lost no 
energy. Thus, to make a meaningful comparison when 
the depth of the emitter is greater than the absorption 
length, it is necessary to select out the particles which 
have their original energy. This requires a mono- 
energetic source, which can be achieved for electrons 
by utilizing the K-conversion electrons resulting from 
a sharp nuclear transition. 

5. Contribution of additional Bragg reflections 

The analysis and discussions above were all based on 
an essentially three-wave description of the intensity 
pattern arising from a single plane. When higher order 
reflections for the same plane are included, one ob- 
tains the sharp structure shown in Fig. 9. However, the 
envelope of the intensity in Fig. 9 is still well represented 
by the three-wave solution. Essentially, one has super- 
imposed on this envelope the two-wave solution for 
the higher order reflections (compare Fig.2); the 
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Fig. 7. Angular  intensity variations for (a) the electron and (b) 
the positron along line I, Fig.6. Nine-wave solution, no 
attenuation. 

widths are relatively sharper owing to the decrease of ~h 
and the increase of 0B with increasing order [see 
equation (8)]. 

6. Concluding remarks 

In the preceding sections we have shown that the ex- 
perimental results of Uggerhoj can be interpreted in 
terms of a wave mechanical description of the scatter- 
ing of the emitted particles. This description yields a 
structure for the emitted intensity whose characteristic 
angles are the Bragg angle and the width of the Bragg 
resonance [equation (8)]. Therefore, in this limit the 
results of the dynamical theory are incompatible with 
the classical mechanical treatment. 

One may well ask under what conditions it is valid 
to use a classical description of particle motion in crys- 
tals. To this end, we have recently expanded our in- 
vestigations to include more massive particles, such as 
the proton and neutron, and a variety of potentials of 
interaction. 

What we find is that the intensity approaches a limit- 
ing form independent of h when the interaction poten- 
tial is sufficiently strong or the mass is sufficiently large. 
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Fig. 8. Angular  intensity variation for (a) the electron and (b) 
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The criterion for the applicability of this limit is that 
the width of the Bragg resonance be large compared 
with the Bragg angle: 

h2k~/2 m = ~ >~1. 

For neutrons, AOB/OB is actually very small; con- 
sequently the angular structure is controlled by Bragg 
angles. For protons and c~ particles, on the other hand, 
AOn/OB is of the order of 103, so that the limiting form 
is very closely approached. This form agrees quite 
well with the observed a-particle emission patterns and 
appears to be the proper classical limit for this problem. 

In order to carry out the above investigations within 
the framework of the dynamical theory, it was neces- 
sary to employ computer solution of the basic matrix 
equations [cf. equations (2) and (3)]. However, our 
results strongly suggest that one should be able to treat 
the approach to the classical limit of particle motion 
in crystals within a relatively simple analytical frame- 
work. We are currently working to develop such a 
treatment, which then can be directly applied to the 
design and interpretation of experiments made with 
the heavier mass charged particles. 
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Experimental Tests of the General Formula for the Integrated Intensity of a Real Crystal 

BY W. H. ZACHARIASEN 

Department of Physics, University of  Chicago, Chicago, lllino&, U.S.A. 

(Received 3 May 1967) 

The new formula for the integrated intensity of a real crystal has been tested experimentally with small 
crystal spheres of hambergite and of ~ quartz, and Mo Ke as well as Cu K~ radiation. Although both 
materials show very large extinction effects, excellent agreement is obtained between theory and experi- 
ment. Discrepancies between predicted and observed integrated intensities seem to be due to inade- 
quately known atomic scattering powers and to experimental errors rather than to a failure of the 
theoretical formula. The mean radius of the perfect crystal domain was found to be 1.98 x 10 -4 cm for 
the hambergite sphere and 0"47 x 10-4 cm for the quartz sphere. 

Introduction 

A new general formula for the integrated intensity, ~ ,  
of a real crystal was recently reported (Zachariasen, 
1967a,b). It was hoped that this new intensity expres- 
sion would be valid over the entire range from the ide- 
ally imperfect to the perfect crystal, and thus provide 
for significant improvement in the accuracy of experi- 
mental determinations of electron distributions, atomic 
scattering powers, and of the positional and thermal 

parameters of the structure. However, in order to ob- 
tain even approximate solutions of the basic equations 
it was necessary to introduce a number of simplifica- 
tions in the course of the derivation of the intensity 
formula. It is accordingly highly desirable to explore 
the validity of the approximations by comparisons 
with experiment for an assortment of crystal specimens. 
This paper gives the results of such tests for two crys- 
tals with large extinction effects, namely hambergite 
(BezBOaOH) and ~ quartz. 


